Best Possible Point Handicap Analysis
Justin Gorby's points are determined using the most recent rounds and a target value of 67.
The base point target is 60.
However, we continually analyze and improve our handicapping techniques through data mining.
A few years ago we found that low handicap golfers and golfers that often play the same golf course over and over require a higher target.
Optimal Point Handicap Analysis
Point Handicap Analysis
1 |
0 |
0 |
0 |
1 |
2 |
9 |
15 |
25 |
17.7 |
62.1 |
1 |
0 |
0 |
0 |
1 |
2 |
9 |
16 |
25 |
17.7 |
62.1 |
1 |
0 |
0 |
0 |
1 |
2 |
9 |
14 |
25 |
17.7 |
62.1 |
3 |
0 |
0 |
0 |
1 |
3 |
5 |
10 |
25 |
15.8 |
62.4 |
3 |
0 |
0 |
0 |
1 |
3 |
5 |
9 |
25 |
15.8 |
62.4 |
3 |
0 |
0 |
0 |
1 |
3 |
5 |
11 |
25 |
15.8 |
62.4 |
1 |
0 |
0 |
0 |
0 |
3 |
7 |
12 |
25 |
17.1 |
62.6 |
1 |
0 |
0 |
0 |
0 |
3 |
7 |
14 |
25 |
17.1 |
62.6 |
1 |
0 |
0 |
0 |
0 |
3 |
7 |
13 |
25 |
17.1 |
62.6 |
1 |
0 |
0 |
0 |
0 |
3 |
7 |
15 |
25 |
17.1 |
62.6 |
2 |
0 |
0 |
0 |
1 |
3 |
6 |
11 |
25 |
17.7 |
64.7 |
2 |
0 |
0 |
0 |
1 |
3 |
6 |
12 |
25 |
17.7 |
64.7 |
2 |
0 |
0 |
0 |
1 |
3 |
6 |
13 |
25 |
17.7 |
64.7 |
1 |
0 |
0 |
0 |
0 |
3 |
8 |
14 |
25 |
17.1 |
64.9 |
1 |
0 |
0 |
0 |
0 |
3 |
8 |
15 |
25 |
17.1 |
64.9 |
1 |
0 |
0 |
0 |
0 |
3 |
8 |
16 |
25 |
17.1 |
64.9 |
1 |
0 |
0 |
0 |
1 |
3 |
7 |
12 |
25 |
17.7 |
67.0 |
1 |
0 |
0 |
0 |
1 |
3 |
7 |
14 |
25 |
17.7 |
67.0 |
1 |
0 |
0 |
0 |
1 |
3 |
7 |
13 |
25 |
17.7 |
67.0 |
1 |
0 |
0 |
0 |
1 |
3 |
7 |
15 |
25 |
17.7 |
67.0 |
3 |
0 |
0 |
0 |
2 |
3 |
5 |
11 |
25 |
16.6 |
67.0 |
3 |
0 |
0 |
0 |
2 |
3 |
5 |
10 |
25 |
16.6 |
67.0 |
3 |
0 |
0 |
0 |
2 |
3 |
5 |
9 |
25 |
16.6 |
67.0 |
1 |
0 |
0 |
0 |
0 |
3 |
9 |
14 |
25 |
17.1 |
67.2 |
1 |
0 |
0 |
0 |
0 |
3 |
9 |
15 |
25 |
17.1 |
67.2 |
1 |
0 |
0 |
0 |
0 |
3 |
9 |
16 |
25 |
17.1 |
67.2 |
3 |
0 |
0 |
1 |
2 |
3 |
5 |
9 |
25 |
16.6 |
68.1 |
3 |
0 |
0 |
1 |
2 |
3 |
5 |
11 |
25 |
16.6 |
68.1 |
3 |
0 |
0 |
1 |
2 |
3 |
5 |
10 |
25 |
16.6 |
68.1 |
1 |
0 |
0 |
0 |
1 |
3 |
8 |
15 |
25 |
17.7 |
69.3 |
1 |
0 |
0 |
0 |
1 |
3 |
8 |
14 |
25 |
17.7 |
69.3 |
1 |
0 |
0 |
0 |
1 |
3 |
8 |
16 |
25 |
17.7 |
69.3 |
2 |
0 |
0 |
0 |
2 |
3 |
6 |
13 |
25 |
16.6 |
69.4 |
2 |
0 |
0 |
0 |
2 |
3 |
6 |
11 |
25 |
16.6 |
69.4 |
2 |
0 |
0 |
0 |
2 |
3 |
6 |
12 |
25 |
16.6 |
69.4 |
2 |
0 |
0 |
1 |
2 |
3 |
6 |
11 |
25 |
16.6 |
70.5 |
2 |
0 |
0 |
1 |
2 |
3 |
6 |
12 |
25 |
16.6 |
70.5 |
2 |
0 |
0 |
1 |
2 |
3 |
6 |
13 |
25 |
16.6 |
70.5 |
1 |
0 |
0 |
0 |
1 |
3 |
9 |
14 |
25 |
17.7 |
71.6 |
1 |
0 |
0 |
0 |
1 |
3 |
9 |
15 |
25 |
17.7 |
71.6 |
1 |
0 |
0 |
0 |
1 |
3 |
9 |
16 |
25 |
17.7 |
71.6 |
1 |
0 |
0 |
0 |
2 |
3 |
7 |
13 |
25 |
17.7 |
71.7 |
1 |
0 |
0 |
0 |
2 |
3 |
7 |
14 |
25 |
17.7 |
71.7 |
1 |
0 |
0 |
0 |
2 |
3 |
7 |
12 |
25 |
17.7 |
71.7 |
1 |
0 |
0 |
0 |
2 |
3 |
7 |
15 |
25 |
17.7 |
71.7 |
|